matrix_methods.js
13.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
var matrix = ({});
var init = function init(matrix){
var sylvester_matrix = function() {};
sylvester_matrix.precision = 1e-6;
sylvester_matrix.create = function(elements) {
var M = new sylvester_matrix();
return M.setElements(elements);
};
var $M = sylvester_matrix.create;
sylvester_matrix.I = function(n) {
var els = [], i = n, j;
while (i--) { j = n;
els[i] = [];
while (j--) {
els[i][j] = (i === j) ? 1 : 0;
}
}
return sylvester_matrix.create(els);
};
sylvester_matrix.prototype = {
e: function(i,j) {
if (i < 1 || i > this.elements.length || j < 1 || j > this.elements[0].length) { return null; }
return this.elements[i-1][j-1];
},
dimensions: function() {
var cols = (this.elements.length === 0) ? 0 : this.elements[0].length;
return {rows: this.elements.length, cols: cols};
},
rows: function() {
return this.elements.length;
},
cols: function() {
if (this.elements.length === 0) { return 0; }
return this.elements[0].length;
},
eql: function(matrix) {
var M = matrix.elements || matrix;
if (!M[0] || typeof(M[0][0]) === 'undefined') { M = sylvester_matrix.create(M).elements; }
if (this.elements.length === 0 || M.length === 0) {
return this.elements.length === M.length;
}
if (this.elements.length !== M.length) { return false; }
if (this.elements[0].length !== M[0].length) { return false; }
var i = this.elements.length, nj = this.elements[0].length, j;
while (i--) { j = nj;
while (j--) {
if (Math.abs(this.elements[i][j] - M[i][j]) > sylvester_matrix.precision) { return false; }
}
}
return true;
},
dup: function() {
return sylvester_matrix.create(this.elements);
},
map: function(fn, context) {
if (this.elements.length === 0) {
return sylvester_matrix.create([]);
}
var els = [], i = this.elements.length, nj = this.elements[0].length, j;
while (i--) {
j = nj;
els[i] = [];
while (j--) {
els[i][j] = fn.call(context, this.elements[i][j], i + 1, j + 1);
}
}
return sylvester_matrix.create(els);
},
isSameSizeAs: function(matrix) {
var M = matrix.elements || matrix;
if (typeof(M[0][0]) === 'undefined') {
M = sylvester_matrix.create(M).elements;
}
if (this.elements.length === 0) {
return M.length === 0;
}
return (this.elements.length === M.length && this.elements[0].length === M[0].length);
},
add: function(matrix) {
if (this.elements.length === 0) return this.map(function(x) { return x });
var M = matrix.elements || matrix;
if (typeof(M[0][0]) === 'undefined') { M = sylvester_matrix.create(M).elements; }
if (!this.isSameSizeAs(M)) { return null; }
return this.map(function(x, i, j) { return x + M[i-1][j-1]; });
},
subtract: function(matrix) {
if (this.elements.length === 0) return this.map(function(x) { return x });
var M = matrix.elements || matrix;
if (typeof(M[0][0]) === 'undefined') { M = sylvester_matrix.create(M).elements; }
if (!this.isSameSizeAs(M)) { return null; }
return this.map(function(x, i, j) { return x - M[i-1][j-1]; });
},
canMultiplyFromLeft: function(matrix) {
if (this.elements.length === 0) { return false; }
var M = matrix.elements || matrix;
if (typeof(M[0][0]) === 'undefined') { M = sylvester_matrix.create(M).elements; }
// this.columns should equal matrix.rows
return (this.elements[0].length === M.length);
},
multiply: function(matrix) {
if (this.elements.length === 0) { return null; }
if (!matrix.elements) {
return this.map(function(x) { return x * matrix; });
}
var returnVector = matrix.modulus ? true : false;
var M = matrix.elements || matrix;
if (typeof(M[0][0]) === 'undefined') { M = sylvester_matrix.create(M).elements; }
if (!this.canMultiplyFromLeft(M)) { return null; }
var i = this.elements.length, nj = M[0].length, j;
var cols = this.elements[0].length, c, elements = [], sum;
while (i--) { j = nj;
elements[i] = [];
while (j--) { c = cols;
sum = 0;
while (c--) {
sum += this.elements[i][c] * M[c][j];
}
elements[i][j] = sum;
}
}
var M = sylvester_matrix.create(elements);
return returnVector ? M.col(1) : M;
},
minor: function(a, b, c, d) {
if (this.elements.length === 0) { return null; }
var elements = [], ni = c, i, nj, j;
var rows = this.elements.length, cols = this.elements[0].length;
while (ni--) { i = c - ni - 1;
elements[i] = [];
nj = d;
while (nj--) { j = d - nj - 1;
elements[i][j] = this.elements[(a+i-1)%rows][(b+j-1)%cols];
}
}
return sylvester_matrix.create(elements);
},
transpose: function() {
if (this.elements.length === 0) return sylvester_matrix.create([]);
var rows = this.elements.length, i, cols = this.elements[0].length, j;
var elements = [], i = cols;
while (i--) { j = rows;
elements[i] = [];
while (j--) {
elements[i][j] = this.elements[j][i];
}
}
return sylvester_matrix.create(elements);
},
isSquare: function() {
var cols = (this.elements.length === 0) ? 0 : this.elements[0].length;
return (this.elements.length === cols);
},
max: function() {
if (this.elements.length === 0) { return null; }
var m = 0, i = this.elements.length, nj = this.elements[0].length, j;
while (i--) { j = nj;
while (j--) {
if (Math.abs(this.elements[i][j]) > Math.abs(m)) { m = this.elements[i][j]; }
}
}
return m;
},
indexOf: function(x) {
if (this.elements.length === 0) { return null; }
var index = null, ni = this.elements.length, i, nj = this.elements[0].length, j;
for (i = 0; i < ni; i++) {
for (j = 0; j < nj; j++) {
if (this.elements[i][j] === x) { return {i: i+1, j: j+1}; }
}
}
return null;
},
diagonal: function() {
if (!this.isSquare) { return null; }
var els = [], n = this.elements.length;
for (var i = 0; i < n; i++) {
els.push(this.elements[i][i]);
}
return sylvester_matrix.create(els);
},
toRightTriangular: function() {
if (this.elements.length === 0) return sylvester_matrix.create([]);
var M = this.dup(), els;
var n = this.elements.length, i, j, np = this.elements[0].length, p;
for (i = 0; i < n; i++) {
if (M.elements[i][i] === 0) {
for (j = i + 1; j < n; j++) {
if (M.elements[j][i] !== 0) {
els = [];
for (p = 0; p < np; p++) {
els.push(M.elements[i][p] + M.elements[j][p]);
}
M.elements[i] = els;
break;
}
}
}
if (M.elements[i][i] !== 0) {
for (j = i + 1; j < n; j++) {
var multiplier = M.elements[j][i] / M.elements[i][i];
els = [];
for (p = 0; p < np; p++) {
// Elements with column numbers up to an including the number of the
// row that we're subtracting can safely be set straight to zero,
// since that's the point of this routine and it avoids having to
// loop over and correct rounding errors later
els.push(p <= i ? 0 : M.elements[j][p] - M.elements[i][p] * multiplier);
}
M.elements[j] = els;
}
}
}
return M;
},
determinant: function() {
if (this.elements.length === 0) { return 1; }
if (!this.isSquare()) { return null; }
var M = this.toRightTriangular();
var det = M.elements[0][0], n = M.elements.length;
for (var i = 1; i < n; i++) {
det = det * M.elements[i][i];
}
return det;
},
isSingular: function() {
return (this.isSquare() && this.determinant() === 0);
},
trace: function() {
if (this.elements.length === 0) { return 0; }
if (!this.isSquare()) { return null; }
var tr = this.elements[0][0], n = this.elements.length;
for (var i = 1; i < n; i++) {
tr += this.elements[i][i];
}
return tr;
},
rank: function() {
if (this.elements.length === 0) { return 0; }
var M = this.toRightTriangular(), rank = 0;
var i = this.elements.length, nj = this.elements[0].length, j;
while (i--) { j = nj;
while (j--) {
if (Math.abs(M.elements[i][j]) > sylvester_matrix.precision) { rank++; break; }
}
}
return rank;
},
augment: function(matrix) {
if (this.elements.length === 0) { return this.dup(); }
var M = matrix.elements || matrix;
if (typeof(M[0][0]) === 'undefined') { M = sylvester_matrix.create(M).elements; }
var T = this.dup(), cols = T.elements[0].length;
var i = T.elements.length, nj = M[0].length, j;
if (i !== M.length) { return null; }
while (i--) {
j = nj;
while (j--) {
T.elements[i][cols + j] = M[i][j];
}
}
return T;
},
inverse: function() {
if (this.elements.length === 0) { return null; }
if (!this.isSquare() || this.isSingular()) { return null; }
var n = this.elements.length, i= n, j;
var M = this.augment(sylvester_matrix.I(n)).toRightTriangular();
var np = M.elements[0].length, p, els, divisor;
var inverse_elements = [], new_element;
// Sylvester.Matrix is non-singular so there will be no zeros on the
// diagonal. Cycle through rows from last to first.
while (i--) {
// First, normalise diagonal elements to 1
els = [];
inverse_elements[i] = [];
divisor = M.elements[i][i];
for (p = 0; p < np; p++) {
new_element = M.elements[i][p] / divisor;
els.push(new_element);
// Shuffle off the current row of the right hand side into the results
// array as it will not be modified by later runs through this loop
if (p >= n) { inverse_elements[i].push(new_element); }
}
M.elements[i] = els;
// Then, subtract this row from those above it to give the identity matrix
// on the left hand side
j = i;
while (j--) {
els = [];
for (p = 0; p < np; p++) {
els.push(M.elements[j][p] - M.elements[i][p] * M.elements[j][i]);
}
M.elements[j] = els;
}
}
return sylvester_matrix.create(inverse_elements);
},
round: function() {
return this.map(function(x) { return Math.round(x); });
},
snapTo: function(x) {
return this.map(function(p) {
return (Math.abs(p - x) <= sylvester_matrix.precision) ? x : p;
});
},
setElements: function(els) {
var i, j, elements = els.elements || els;
if (elements[0] && typeof(elements[0][0]) !== 'undefined') {
i = elements.length;
this.elements = [];
while (i--) { j = elements[i].length;
this.elements[i] = [];
while (j--) {
this.elements[i][j] = elements[i][j];
}
}
return this;
}
var n = elements.length;
this.elements = [];
for (i = 0; i < n; i++) {
this.elements.push([elements[i]]);
}
return this;
}
};
matrix.sylvester_matrix = sylvester_matrix;
}
init(matrix);
export function inverse(els){
var M = matrix.sylvester_matrix.create(els);
return M.inverse().elements;
}